

Extending near fault earthquake catalog using convolutional neural network and single-station waveforms

Josipa Majstorović, Sophie Giffard-Roisin and Piero Poli

Institut des Sciences de la Terre, Université Grenoble Alpes

Journée utilisateurs GRICAD 2020

European Research Council

Established by the European Commission

2-3 November 2020 Grenoble

Introduction & Study area
 Extending a near fault earthquake catalog to study
 Iocal seismicity (eg. sessional effects).
 Main focus is L'Aquila earthquake (Mw 6.3) that occurred on April 6th 2009, 01:32 UTC right

beneath the city of L'Aquila (Abruzzo region).

42.6

42.5°

42.4°

42.3

42.2

42.1°

2

Methodology

Convolutional Neural Network (CNN) is a supervised learning algorithm.

Artificial intelligence

Machine learning

Deep learning

Source: Future part of Al-Part 5

I. Catalog of earthquakes

Local Regional Tele-seismic

How to build a good database of the events to distinguish the local events?

2. Seismograms

Three component seismograms (broad band) from **1990 to 2019** recorded at **AQU (42.354, 13.405)** station near city of L'Aquila, central Italy.

WWW Data and preprocessing

I. Catalog of earthquakes

INGV catalog USGS for M > 4.5Valoroso et. al., 2013

~500k

Proposed framework

The grid search is performed for the best combination of the CNN hyperparameters.

Tests	Description	Parameters
2	Architecture	Deep and shallow CNN
2	Optimisation algorithms	SGD and ADAM
3	Learning rate	le-5, le-3, le-2
2	Momentum	0.2, 0.9
2	Mini-batch size	128,512
Fixed	Epochs	Early stopping

TOTAL 48 tests

			SH	ALLC	DW CI	NN		
		12	8			5	12	
Μ	SG	SD	AD	AM	SG	SD	AD	AM
Г16	T25	T27	T37	Т39	T26	T28	T38	T40
20	T29	T31	T41	T43	Т30	T32	T42	T44
24	Т33	T35	T45	T47	T34	T36	T46	T48
0.9	0.2	0.9	0.2	0.9	0.2	0.9	0.2	0.9

Kesults

Training + validation

Evaluation

Accuracy 97%

Continuous data Local catalog (ep <10 km)

ISTerre cluster

majstorj@ist-oar:/data/projects/monifault\$ ls david hugo josipa larino leoncio nour peidong piero

(base) majstorovicj@f-dahu:/summer/monifault\$ ls larino leoncio nour peidong piero david hugo josipa

Piero Peidong Hugo David Josipa Leoncio Nour

December 2019 - newbie

Thank you sos-calcul-gricad!

ISTerre cluster

Mount this folder on my laptop.

Codes, results 100 Gb

~ 30 years of three component seismograms for I station

276 Gb

Stages of the framework

I. Building an extensive catalog

2. Extracting positive and negative samples ISTerre (CPU)

3. CNN training and validation

4. CNN evaluation

5. Running CNN on continuous data

6. Extracting local events

CNN training and validation ~4 Gb

Grid search - 48 test

			[DEEP	CN	CNN SHA		IALLC	LOW CNN					
	12		28		512 12		51		512 128					
	SG	SD	AD	AM	SC	SD	AD	AM	SC	SD	AD	AM	SG	SD
1E-05	T1	Т3	T13	T15	T2	T4	T14	T16	T25	T27	T37	Т39	T26	Т
1E-03	T5	T7	T17	T19	Т6	Т8	T18	T20	T29	T31	T41	T43	T30	Т
1E-02	Т9	T11	T21	T23	T10	T12	T22	T24	Т33	T35	T45	T47	T34	Т
	0.2	0.9	0.2	0.9	0.2	0.9	0.2	0.9	0.2	0.9	0.2	0.9	0.2	(

I estimated that I need only 2 cores.

#!/bin/bash
#0AR -n run1gpu
#0AR -t gpu
#0AR -t gpu
#0AR -l /nodes=1/gpudevice=1/core=2,walltime=5:00:00
#0AR --stdout output_DET_J0B1_m2_n1_a1_o1_l1_t1_b1.out
#0AR --stderr output_DET_J0B1_m2_n1_a1_o1_l1_t1_b1.err
#0AR --project monifault
#0AR --notify mail:josipa.majstorovic@univ-grenoble-alpes.fr

Sending jobs in batches of 8.

There was a problem with the submission order: /nodes=1/gpudevice=1/core=2.

CNN training and validation

- I have/need to run grid search for a lot of different experiments! Jobs = Experiments x 48 Option to automatically submit jobs in batches or individually. Not elegant solution: small python script that checks the
 - status of my submitted jobs.

Magnitude < |, |-2, 2-3, >

Memory issue

Submission order of nodes, gpudevice, cores

Submission of many jobs

Stages of the framework

I. Building an extensive catalog

2. Extracting positive and negative samples ISTerre (CPU)

3. CNN training and validation

4. CNN evaluation

5. Running CNN on continuous data

6. Extracting local events

5. Running CNN6. Extracting localon continuous dataevents

- ~1h 10 ~4 min
 - ~|h

~3 min

~2h 30

~9.8 min

~6.4 min

use	ers
	Main Page
	General docs
	Clusters docs
	Grid docs
	Support
adr	ministrators
	Admin docs
	CiGri middleware
	CIMENT operations
link	S
-	Ciment
sea	arch
1	
	Go Search
too	ls
	What links here
=	Related changes
	Special pages

- Printable version
- Permanent link

discussion

view source

history

Main Page

page

This wiki is intended to give useful informations about the Ciment clusters and grid and may be edited by every Ciment user (excepted protected pages that are maintained by the staff). For more information, please, visit the official site d.

Getting started

- General docs: In this section, you'll find docs and tutorials about common services of CIMENT.
- Clusters docs: In this section, you may find docs about a particular cluster.
- Grid docs: In this section, you'll find docs and tutorials about the Ciment GRID (CiGri) and related services such as the grid storage.
- Admin docs: Here are some docs for CIMENT system administrators

Discussion lists

Another source of informations are discussion lists. You are strongly encouraged to participate to the ciment-users@univ-grenoble-alpes.fr ist. Every Ciment users are automatically subscribed to this list. Other lists are available, such as lists specific to ciment poles or ciment platforms. They are hosted on the Université Grenoble Alpes server: https://listes.univ-grenoble-alpes.fr/

This page was last modified on 4 June 2019, at 13:38.

This page has been accessed 123,805 times.

I appreciate the effort of having the Wiki in English.

Welcome to the CIMENT Wiki

About CIMENT Privacy policy

Disclaimers

[e] Powered By MediaWiki

view source

use	ers
	Main Page
	General docs
	Clusters docs
	Grid docs
	Support
adı	ministrators
	Admin docs
	CiGri middleware
	CIMENT operations
link	s
	Ciment
sea	arch
ſ	
1	Go Search
too	ls
	What links here
=	Related changes
	Special pages
	Printable version

Permanent link

Main Page

discussion

This wiki is intended to give useful informations about the Ciment clusters and grid and may be edited by every Ciment user (excepted protected pages that are maintained by the staff). For more information, please, visit the official site d.

Getting started

page

General docs: In this section, you'll find docs and tutorials about common services of CIMENT.

history

- Clusters docs: In this section, you may find docs about a particular cluster.
- Grid docs: In this section, you'll find docs and tutorials about the Ciment GRID (CiGri) and related services such as the grid storage.
- Admin docs: Here are some docs for CIMENT system administrators

Discussion lists

Another source of informations are discussion lists. You are strongly encouraged to participate to the ciment-users@univ-grenoble-alpes.fr 🖃 list. Every Ciment users are automatically subscribed to this list. Other lists are available, such as lists specific to ciment poles or ciment platforms. They are hosted on the Université Grenoble Alpes server: https://listes.univ-grenoble-alpes.fr/

Thank you for your attention!

This page was last modified on 4 June 2019, at 13:38.

This page has been accessed 123,805 times.

I appreciate the effort of having the Wiki in English.

Welcome to the CIMENT Wiki

Privacy policy

About CIMENT Disclaimers [e] Powered By MediaWiki