Seismicity at the Alto Tiberina Fault revealed by template matching using GPU

David Essing

erc
UCA

The Alto Tiberina Fault

Vadacca et al. (2016)

- shallow portion of the fault
- capable of generating M6.5+ earthquakes
- attached faults
- Magnitude < 5.2 in 1984 (Haessler et al. 1988)
- historical seismicity indicated
- Magnitudes > 6

Questions to investigate

- Studying the short- and long-term deformation
- Interaction between the different faults
- Is this type of fault capable of generating earthquakes (L. Anderlini et al. 2016)

Existing catalog (Chiaraluce, 2019)

Template matching on GPU

organization of the computation into blocks and threads

- cc between template and one sliding window of continuous seismic data is computed in a single thread
- throughput of shared memory is $10 x$ larger than the one of global memory

Existing catalog

Extended catalog - New detection's

- with ~ 450 template's we are able to find ~ 9000 events
we are able to find 9 times more events as listed in the existing catalog

Tests on dahu

- for computation we used 1 GPU device with 8 cores

	test \#1	test \#2	test \#3	test \#4	
Input	1	860	30	30	
days of continuous seismic data [d]	200	200	231	218	
templates		60	40080	1800	1680
computational time [s]	0.30	0.23	0.26	0.26	
computational time per template and day					
[s]					

Length of the whole experiment

- 1,200 days of continuous seismic data
- 24,000 templates (we will only use high quality templates)
- 0.26 seconds of computational time per day and template
- ~ 90 days of computational time (1 GPU device, 8 cores on dahu)

How can we do that in a reasonable amount of time?

Thank you

- for attention
- for providing the CIMENT wiki
- for any help and suggestions

Additional things

